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Abstract

Serrano de Araujo, Breno; Vidal, Thibaut Victor Gaston (Advisor).
A MIP approach for Community Detection in the Sto-
chastic Block Model. Rio de Janeiro, 2020. 68p. Dissertação de
Mestrado – Departamento de Informática, Pontifícia Universidade
Católica do Rio de Janeiro.

The Degree-Corrected Stochastic Block Model (DCSBM) is a popular
model to generate random graphs with community structure given an expected
degree sequence. The standard approach of community detection algorithms
based on the DCSBM is to search for the model parameters which are the most
likely to have produced the observed network data, via maximum likelihood
estimation (MLE). Current techniques for the MLE problem are heuristics
and therefore do not guarantee convergence to the optimum. We present
mathematical programming formulations and exact solution methods that can
provably find the model parameters and community assignments of maximum
likelihood given an observed graph. We compare the proposed exact methods
with classical heuristic algorithms based on expectation-maximization (EM).
The solutions given by exact methods give us a principled way of recognizing
when heuristic solutions are sub-optimal and measuring how far they are from
optimality.

Keywords
Community detection; Stochastic Block Model; Mixed Integer Program-

ming; Machine Learning; Unsupervised Learning; Local Search.
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Resumo

Serrano de Araujo, Breno; Vidal, Thibaut Victor Gaston. Uma
abordagem de Programação Inteira Mista para Detecção
de Comunidades no Stochastic Block Model. Rio de Janeiro,
2020. 68p. Dissertação de Mestrado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

O Degree-Corrected Stochastic Block Model (DCSBM) é um modelo po-
pular para geração de grafos aleatórios com estrutura de comunidade, dada
uma sequência de graus esperados. O princípio básico de algoritmos que uti-
lizam o DCSBM para detecção de comunidades é ajustar os parâmetros do
modelo a dados observados, de forma a encontrar a estimativa de máxima
verossimilhança, ou maximum likelihood estimate (MLE), dos parâmetros do
modelo. O problema de otimização para o MLE é comumente resolvido por
meio de heurísticas. Neste trabalho, propomos métodos de programação ma-
temática, para resolver de forma exata o problema de otimização descrito, e
comparamos os métodos propostos com heurísticas baseadas no algoritmo de
expectation-maximization (EM). Métodos exatos são uma ferramenta funda-
mental para a avaliação de heurísticas, já que nos permitem identificar se uma
solução heurística é sub-ótima e medir seu gap de otimalidade.

Palavras-chave
Detecção de Comunidades; Stochastic Block Model; Programação

Inteira Mista; Machine Learning; Aprendizado Não-Supervisionado; Busca
Local.
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1
Introduction

Many networks that occur in the real-world present some form of com-
munity structure, where vertices are organized in groups (also called com-
munities). Vertices within the same community present a similar connection
pattern. In particular, assortative communities represent groups of individuals
that are more densely connected to each other than to individuals of other
groups. The Stochastic Block Model (SBM) is a simple yet versatile model for
the generation of networks with different types of community structure. Under
the SBM, the probability that any two vertices are connected only depends on
the community memberships of the corresponding vertices. Various extensions
to the SBM have been proposed, for example the Degree-Corrected Stochastic
Block Model (DCSBM) [1], in which the expected degrees of the vertices can
be further specified.

One important application of the DCSBM is in the task of community de-
tection. Identifying communities offers valuable information about the under-
lying structure of an observed network [2]. Community detection has important
applications, in the study of social networks [3], networks of protein-protein
interactions [4], gene expressions [5] and in DNA 3D folding [6], among others.
The general principle of community detection methods based on such models
is to search for the model parameters, namely the community assignments and
the latent variables describing the connectivity matrix, that are the most likely
to have generated the observed network data. The model parameters can be
estimated via maximum likelihood estimation (MLE) given an observed graph.

Current methods for the MLE problem are heuristics which are not guar-
anteed to converge to the solution of maximum likelihood. Convergence guar-
antees focus on the probability of recovering the true underlying communities
of a graph generated by the SBM in the asymptotic limit when the size of
the network grows to infinity. Works in the literature [7, 8] study the com-
munity recovery problem from a statistical and information-theoretic point of
view and provide thresholds and conditions under which different types of al-
gorithms are able to recover the underlying community assignments with high
probability for different asymptotic regimes.

We address the MLE problem, from an optimization standpoint, and
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Chapter 1. Introduction 13

propose mathematical programming formulations which can be solved to
optimality by general-purpose optimization solvers. The resulting methods can
provably find the optimal solution (and bounds) of the maximum likelihood
model for an observed graph. The main contribution of this work is to make a
first step towards developing exact solution methods for the MLE problem of
community detection in the DCSBM.

We formulate the MLE problem using mixed integer programming (MIP)
techniques and propose exact solution methods. Firstly, a straightforward
descriptive formulation is proposed, which results in a mixed integer non-linear
program (MINLP). The model can be exactly solved with algorithms based
on spatial branch-and-bound (sBB), using global optimization solvers. The
resulting method can find the DCSBM parameters of maximum likelihood
with a certificate of global optimality. However, it is intractable even for
very small networks. Building upon it, we employ linearization techniques to
produce a mixed integer linear programming (MILP) formulation. To make the
formulation solvable in practice we make use of dynamic constraints generation
and symmetry-breaking constraints. We carefully analyze the problem to derive
tight bounds on the model variables. The MILP model drastically reduces the
computation time required by the more naive approach.

The ability to solve machine learning models to optimality has important
consequences, as having access to optimal solutions of a problem allows us to
study the performance of heuristic approaches in a more principled way and
to measure how far a heuristic solution is from the optimum. To illustrate this,
we discuss three variants of the expectation-maximization (EM) algorithm and
run computational experiments to compare the heuristic solutions with those
found by the exact solution approaches in terms of likelihood and proximity
to the ground truth.

This work is organized as follows: Chapter 2 introduces important
background concepts on random graph models, including the SBM and some
of its variants, such as the DCSBM. In Chapter 3 we formally state the MLE
problem, briefly review related works and discuss our main contributions. Next,
we present the mixed integer programming formulations and exact solution
approaches in Chapter 4. As a means of comparison we describe some simple
heuristic approaches based on the EM algorithm in Chapter 5. Then, Chapter 6
details the computational experiments and discusses their results and Chapter
7 concludes this work.
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2
Theoretical Foundations

This chapter introduces the theoretical basis of the Stochastic Block
Model. In order to provide some background on the methods proposed in this
work, we first briefly present some classical models of random graphs [9, 10]
and discuss their connections to the SBM (and its main variants).

2.1
Random Graphs

The term random graph is used to refer to probability distributions over
graphs (i.e. a probability distribution of a graph-valued random variable) [11].
Whereas a random variable can be described by a probability distribution, a
random graph can be described by a network model, in which the values of
certain network properties are fixed, while other properties are random. Many
random graph models with different characteristics have been proposed in the
literature [9, 12, 13, 14], and the Stochastic Block Model is a particular case.
This section describes a few fundamental network models which are useful for
understanding the Stochastic Block Model and its variants.

2.1.1
Erdős–Rényi Random Graph Model

The Erdős–Rényi (ER) model of random graphs was first proposed by
Paul Erdős and Alfréd Rényi in 1959 [15, 16]. The Erdős–Rényi model ER(n, p)
can be specified by two parameters: the number of vertices n in the graph and
the edge probability p between any pair of vertices. Under the ER model, the
vertex set V is defined a priori and, for each pair of vertices in V , an edge
is present with probability p, independent of any other pair of vertices. We
write G ∼ ER(n, p) to denote that the graph G is drawn under the ER model.
The resulting graph is undirected and can be represented by a symmetric
adjacency matrix A. It can be equivalently stated that each element Aij follows
a Bernoulli distribution with mean p, Aij ∼ Bernoulli(p), for i < j. Figure 2.1
illustrates some realizations of the ER model.

The expected number of edges on the graph G is equal to
(
n
2

)
p =

1
2n(n − 1)p. One important property of the ER model is that, for any vertex
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p=0.1 p=0.4 p=0.6 p=0.9

Figure 2.1: Realizations of the ER model for n = 10 and different values of p

i, the probability P (ki = k) that i has degree exactly k is given by a binomial
distribution: P (ki = k) =

(
n−1
k

)
pk(1−p)n−1−k. For large enough n, the random

variables ki and kj associated with P (ki = k) and P (kj = k) can be assumed
to be independent for different vertices i and j.

The binomial distribution can be approximated by the Poisson distribu-
tion for large n if np → λ, where λ is a constant. This means that the edge
probability p remains small relative to the size of the network. Therefore for
large networks, assuming p = λ

n
, the degree distribution of the Erdős–Rényi

random graph is approximately Poisson with mean λ = np:

P (ki = k)→ λke−λ

k! = (np)ke−np
k! (2-1)

For this reason the model is often also called the “Poisson random graph” in
the literature.

The ER model was proposed as a model for studying the behavior of real-
world networks and it has many important properties which make it a useful
theoretical tool. Nevertheless, Albert and Barabási (2002) [14] show that the
model has some properties which make it fundamentally different from real-
world networks. In particular, it is empirically shown that many large networks
have a right-skewed degree distribution, where most of the vertices have a low
degree and only a small number of vertices in the tail of the distribution have
high degree. The degree distribution of many real-world networks can thus be
approximated by a power law distribution P (ki = k) ' k−γ, as opposed to the
Poisson distribution produced by the model.

To address this shortcoming various extensions to the ER model have
been proposed which allow for non-Poisson degree distributions. In the next
section we present one such model which admits any desired degree distribu-
tion, called the configuration model.
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2.1.2
Configuration Model

The configuration model [9] is an extension of the ER model which
allows for the generation of networks with a given degree sequence. That is,
for each vertex i ∈ V , its degree ki is specified (and is a fixed value). The
degree sequence can be directly specified or can be drawn from a theoretical
distribution (such as the Poisson or power-law distribution). The generation
of the network then works as follows.

Each vertex i receives a total of ki “stubs” (also called “half-edges”).
The sum of stubs in the graph is equal to ∑i ki = 2m, where m is the total
number of edges. The sum of stubs must be an even number, and the value of
m is therefore specified. Two stubs are then chosen uniformly at random and
connected to form an edge. Another pair of stubs is chosen from the remaining
2m−2 stubs in the graph and connected together, and this process is repeated
until there are no more remaining stubs in the graph. As a result, every vertex
of the graph has the degree exactly as specified. The resulting network may
contain self-edges or multi-edges, however the expected number of self-edges
and multi-edges tends to zero for large n (as n tends to infinity).

One special case of the configuration model is when the degree sequence
is drawn from the Poisson distribution, in which case the random graph model
is closely equal to the ER(n, p) model. Both models are not exactly equal since
the configuration model allows for the creation of self-edges and multi-edges,
as opposed to the ER model. However, this difference can be ignored for large
networks.

An important property of the configuration model is the expected number
of edges pij between vertices i and j. Consider a stub from vertex i. The
total number of stubs in the network, excluding the one we are considering,
is equal to 2m − 1. Out of the 2m − 1 stubs in the network, exactly kj are
assigned to vertex j. Since stubs are connected together uniformly at random,
the probability that the stub from vertex i connects with any of the stubs
from vertex j is given by kj/(2m−1). Since vertex i has ki stubs, the expected
number of edges between vertices i and j is:

pij = kikj
2m− 1 '

kikj
2m (2-2)

where the second equality is approximately equal for large m.
The configuration model plays an important role in the field of Network

Science, greatly due to the importance of the degree distribution in real-world
networks. We refer the reader to [9] for a more detailed introduction to this
network model and a discussion about its key properties. The next section
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presents the Stochastic Block Model, which can be viewed as an extension of
the ER model to produce graphs with block structure.

2.1.3
Stochastic Block Model

Many real-world networks present some form of community structure,
where vertices are arranged in groups (also denoted communities, clusters
or modules in the literature) [2]. The classic view of community structure
can be expressed by the notion that the density of connections within a
community is higher than between different communities. This notion captures
the interaction pattern of some real-world networks, where members of a group
interact more strongly with other members of the same group, than they do
with members of other groups. There exists, however, no general consensus on
the precise definition of a community, and this classical notion has often been
challenged [17, 18]. The Stochastic Block Model provides one way of defining
communities, in terms of connection probabilities.

The Stochastic Block Model (SBM) is a generative model of random
graphs with community structure [3, 20, 21, 22]. The number of vertices n
and the number of communities K is fixed and specified a priori. Each vertex
in the network has a unique community assignment (each vertex belongs to
exactly one community). The group of vertex i is assumed to be known and
is given by gi ∈ {1, . . . , K}. Edges are then placed in the graph such that the
probability that vertices i and j are connected only depends on their group
memberships, and is given by ωgigj

∈ [0, 1]. Hence, the SBM can be defined by
a group membership vector g ∈ {1, . . . , K}n, which encodes the community
assignment of each vertex i ∈ {1, . . . , n}, and by a K ×K connectivity matrix
Ω (also called affinity matrix in the literature), which represents the edge
probabilities for each pair of communities. We write G ∼ SBM(g,Ω) to denote
that the graph G is drawn under the SBM with parameters g and Ω.

The SBM generalizes the classic notion of community structure, in
that it allows for the generation of different types of block structure, as
illustrated in Figures 2.2 and 2.3 for an SBM with three groups. If the
connection probabilities are higher inside the diagonal blocks than elsewhere,
namely ωqq > ωrs,∀q, r, s ∈ {1, . . . , K}, with r 6= s, then the SBM is said
to have an assortative structure [23] (which represents the classic view of
community structure). If ωqq < ωrs,∀q, r, s ∈ {1, . . . , K}, with r 6= s, then
we have a disassortative structure, and edges are more likely between different
communities than inside them. The special case in which all probabilities in the
affinity matrix are equal, ωrs = p, ∀r, s, is equivalent to the classic Erdős-Rényi
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random graph model ER(n, p).

2.2(a): Assortative structure 2.2(b): Disassortative structure

2.2(c): Core-periphery structure 2.2(d): Random graph

Figure 2.2: Four network realizations produced by the SBM with three com-
munities and with different types of community structure (inspired by Figure
8 of Fortunato and Hric, 2016 [2]). Each figure depicts the underlying affin-
ity matrix Ω (left) and the resulting graph (right) drawn under the SBM. The
affinity matrix is represented in a lightness scale where darker colors correspond
to higher probability values and lighter colors correspond to lower values.

Amini et al. [24] further define two notions of assortativity: strong
and weak assortativity. The former corresponds to our previous definition of
assortativity, which can be equivalently stated as:

min
q
ωqq > max

r 6=s
ωrs. (2-3)

The model is weakly assortative if each element in the diagonal of Ω is greater
than or equal to the other elements in its row:

ωqq > ωqs, ∀q, s ∈ {1, . . . , K}. (2-4)

Strong assortativity implies weak assortativity, but the converse is not true.
The SBM also enables the generation of other types of structure, such as core-
periphery, hierarchical, or multipartite structures, among others.

The SBM as described above produces simple graphs (without self-edges
or multi-edges). In this case, each element of the adjacency matrix A is a
random variable with a Bernoulli distribution: Aij ∼ Bernoulli(ωgigj

), for
i < j and Aii = 0,∀i. If the networks are allowed to contain multi-edges and
self-edges, then ωgigj

no longer represents the probability of an edge between
vertices i and j, but rather the expected number of edges between them. The
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Figure 2.3: Graphs with different types of community structure produced by
the SBM with three groups. The same networks of Figure 2.2 are drawn in
this figure with the vertices arranged in a circle. This alternative visualization
further highlights the differences in the resulting network structures. From left
to right, the following structures are illustrated: assortative, disassortative,
core-periphery and random graph.

number of edges between any pair of vertices is a Poisson-distributed random
variable with mean ωgigj

∈ R+. Hence, Aij ∼ Poisson(ωgigj
), for i < j. By

convention, the diagonal element Aii is equal to twice the number of self-edges
from i to itself (and thus is always an even number).

In summary, two variants of the standard SBM were presented: the
Bernoulli version which generates undirected simple graphs, and the Poisson
version which produces undirected multi-graphs. In this work we assume that
graphs are allowed to have self-edges and multi-edges and thus adopt the
Poisson-distributed SBM, unless otherwise noted. The next section presents a
popular extension of the SBM which allows for heterogeneous vertex degrees.

2.1.4
Degree-Corrected Stochastic Block Model

The degree-corrected SBM (DCSBM) was introduced by Karrer and
Newman [1] in 2011. They argued that the standard SBM is not well suited
for many applications to real-world networks, since the model cannot generate
networks with structure similar to those found in empirical network data. They
claim that a key reason is that the standard SBM does not take into account
the variation in vertex degree, and thus proposed to address this problem by
extending the SBM to consider the heterogeneity in the degrees of vertices.
The DCSBM is an extension of the SBM in a similar way as the configuration
model is an extension of the ER model, allowing for the generation of networks
with arbitrary degree distributions.

The DCSBM introduces a new set of parameters θi that control the
expected degree of vertex i. The number of edges between a pair of vertices i
and j, with i < j, is drawn from a Poisson distribution with mean θiθjωgigj

:
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Aij ∼ Poisson(θiθjωgigj
) =

(θiθjωgigj
)Aij

Aij!
exp (−θiθjωgigj

), (2-5)

which depends not only on the group memberships gi and gj, but also on the
expected degrees θi and θj of the vertices. The diagonal elements Aii are again
equal to twice the number of self-edges from i to itself. As before, the number
of vertices n and the number of groups K are fixed and specified a priori. The
DCSBM is specified by the community assignments g, the affinity matrix Ω
and the expected vertex degrees θ:

G ∼ DCSBM(g,Ω,θ). (2-6)

In their work, Karrer and Newman analyze real-world networks and experi-
mentally show that this minor extension to the SBM provides a much better
fit when performing community detection.

2.1.5
Planted Partition Model

The Planted Partition Model (PPM) is a special case of the SBM where
all diagonal elements of the affinity matrix Ω are equal to p, and all off-diagonal
elements are equal to q. In other words, ωrs = p if r = s and ωrs = q otherwise
if r 6= q. Thus, the affinity matrix is defined by just two parameters p and q
via the equation:

Ω = qEK + (p− q)IK (2-7)
where EK is the K × K matrix of all ones and IK is the K × K identity
matrix. We write G ∼ PP(g, p, q) to denote that the graph G is drawn under
the PPM with community assignments g and parameters p and q. One special
case of the PPM is the balanced Planted Partition Model, PPbal(g, p, q), which
further assumes that the communities have equal sizes. For simplicity we may
omit the dependence on g and write PP(p, q) and PPbal(p, q).
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3
Community Detection with the Stochastic Block Model

Community detection refers to the task of identifying communities in a
network (also called graph or network clustering in the literature). Figure 3.1
illustrates the general idea of community detection: given a network, where the
only information available is the presence of edges between vertices, the aim is
to identify to which community each vertex belongs. This is, however, a loosely
defined problem, since there exists no universal definition of a community.
Consequently, there is no universal way of comparing different approaches to
community detection and assessing their performance. Fortunato and Hric [2]
argue that the lack of a universal definition of a community gives a lot of
freedom for researchers to propose diverse approaches to the problem. This
has lead to the development of a multitude of methods, for example based
on consensus clustering [25], spectral clustering [26], modularity maximization
[27] and methods based on statistical inference, among others [2].

This work focuses on the problem of community detection based on the
degree-corrected SBM, which is the most popular approach among the methods
based on statistical inference. The standard approach is to fit the generative
model to the observed network data, where the number of communities K is
assumed to be known. Fortunato and Hric [2] discuss some heuristic techniques
for determining the value of K.

In this chapter, we describe the main concepts behind community detec-
tion based on the DCSBM. We then formally present the problem statement,
briefly review related works in the literature and discuss the main contributions
of this work.
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Figure 3.1: Given an observed network (left) the task of community detection
consists in identifying the underlying assignments of vertices to communities
(right).

Community
detection

3.1
Maximum Likelihood Estimation

In the community detection problem we observe a graph G = (V,E) and
aim to identify communities in it. As usual, the total number of vertices is
|V | = n, the total number of edges is |E| = m, and the graph is represented by
an adjacency matrix A. When the DCSBM is used for community detection,
the standard approach is to search for the model parameters that provide the
best fit to the observed graph G.

Maximum likelihood estimation (MLE) [28] is a common method for
finding the parameter values of a model or probability distribution given
observed data. The parameter values are estimated by maximizing a likelihood
function, such that under the assumed statistical model the observed data
is most likely. If the individual observations are assumed to be statistically
independent, then the probability density function (PDF) of the data given
the parameters can be expressed as a product of PDFs of the individual
observations.

Assuming the Poisson version of the DCSBM, and given the values of the
model parameters, the probability that the observed network was generated
from the DCSBM can be expressed as:
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P (A|g,Ω,θ) =
∏
i<j

(θiθjωgigj
)Aij

Aij!
exp (−θiθjωgigj

)×

∏
i

(
1
2θ

2
iωgigi

)Aii/2(
1
2Aii

)
!

exp
(
−1

2θ
2
iωgigi

) (3-1)

which defines the likelihood function of the DCSBM.
In this work we adopt the special case where θiθj = kikj

2m , as in Newman
(2016) [19], where kikj

2m corresponds to the expected number of edges in the
configuration model. With this definition, the parameter ωgigj

now quantifies
the expected number of edges between vertices i and j, relative to the
configuration model.

As usual, it is more convenient to maximize the log-likelihood function.
After removing constant terms which do not affect the position of the optimum,
Equation (3-1) simplifies to:

logP (A|g,Ω) = 1
2

n∑
i,j

(
Aij logωgigj

− kikj

2m ωgigj

)
(3-2)

The complete derivation is available in Appendix A. The solution to the MLE
problem is given by an affinity matrix Ω and group membership assignments
g, which maximize the log-likelihood function (3-2).

3.2
Community Recovery

The literature on community detection with the SBM mainly focuses
on the problem of recovering the true underlying community labels of an
observed network G, drawn under the SBM, in the asymptotic limit as the
size of the network grows to infinity (i.e. as n tends to infinity). Three types of
recovery requirements are described by Abbe (2018) [7]: exact recovery, almost
exact recovery and weak recovery (also called detection). The model adopted
in this work is based on Karrer and Newman (2011) [1] and Newman (2016)
[19], and is slightly different from the one described by Abbe, in that the
community assignments g are specified and deterministic, rather than drawn
from a probability distribution over the community labels.

The recovery requirements rely on an agreement function, defined as
follows:

Agreement. Let x,y ∈ {1, . . . , K}n be two community assignment vectors.
The agreement between x and y is the maximum number of common elements
between x and any permutation of the community labels of y:
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A(x,y) = max
π∈ΠK

1
n

n∑
i=1

1(xi = π(yi)) (3-3)

where ΠK is the set of all permutations of the set of labels {1, . . . , K}. In other
words, the agreement function A(·, ·) ∈ [0, 1] measures the agreement between
two membership vectors, considering all possible permutations of community
labels.

Let G be a graph drawn under the SBM with true underlying communin-
ity assignments g∗. The recovery requirements as described by Abbe (2018) [7]
can be defined as follows:

Exact recovery. An algorithm performs exact recovery if it takes as input
the graph G and correctly recovers the underlying assignments of nodes to
communities g∗ with high probability (i.e., with probability tending to 1 as
n→∞), considering all possible permutations of community labels:

P [A(ĝ, g∗) = 1] −−−→
n→∞

1 (3-4)

where ĝ is the vector of community assignments estimated by the algorithm.

Almost exact recovery. Whereas exact recovery requires all community
assignments to be correctly recovered, almost exact recovery allows for a
vanishing fraction of mislabelled vertices:

P [A(ĝ, g∗)→ 1] −−−→
n→∞

1 (3-5)

Weak recovery. This recovery requirement is in fact a special case of partial
recovery [7], which allows for a constant fraction α ∈ (0, 1) of mislabelled
vertices in the vector of community assignments:

P [A(ĝ, g∗) ≥ α] −−−→
n→∞

1 (3-6)

where α is called the agreement (or accuracy) of the algorithm. If the value of
α is too small, partial recovery may not be an interesting requirement. In the
SBM with K balanced communities (i.e. communities with equal sizes) we can
achieve an accuracy of 1/K with an algorithm that simply ignores the graph G
and draws community assignments ĝ at random. Thus, weak recovery requires
that the algorithm performs significantly better than random guessing, which
is realized if there exists ε > 0, such that:

P
[
A(ĝ, g∗) ≥ 1

K
+ ε

]
−−−→
n→∞

1 (3-7)
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In the recovery requirements described above the affinity matrix Ω =
Ω(n) is assumed to be dependent on n, while the number of communities K is
fixed and the relative sizes of the communities in g∗ remains constant (i.e. the
size of the communities grows linearly with n). Different asymptotic regimes
are considered in the literature [7, 29] which describe how Ω scales as a function
of n. For example, following Del Pia et al. (2020) [29] three regimes can be
distinguished:

• Very dense regime: Ω(n) = Θ(1)

• Dense regime: Ω(n) = Θ(n−a) for 0 < a < 1

• Sparse regime: Ω(n) = Θ(log n/n)

The solution to the MLE problem can be shown to recover the true
community assignments with high probability, under some conditions on the
parameter values of the connectivity matrix and on the asymptotic regime.
Although community recovery can be solved, in some cases, via maximum
likelihood estimation, the two problems (MLE vs. recovery) are fundamentally
different. The recovery requirements are all asymptotic, and convergence guar-
antees focus on the probability of recovering the true underlying parameters of
the model. In contrast, maximum likelihood estimation is a statistical method
which may be applied without assuming the existence of true underlying com-
munity assignments g∗.

In principle, maximum likelihood estimation may be applied to any
network data, without the assumption that it was produced by a specific
model (such as the SBM), for example to gain insights about the structure
of the graph. In the non-asymptotic case, where we observe a (fixed) graph
G, the optimal parameter values of maximum likelihood do not necessarily
correspond to the true underlying parameters (ground truth parameters may
not even exist in general). Moreover, the asymptotic regime does not occur in
real-world applications and we can assume that asymptotic results hold only
approximately, for large networks. The distinction between the MLE problem
and community recovery is important, as this work focuses solely on the former
problem, while most of the works in the literature address the latter.

3.3
Literature Review

There is a rich literature on Stochastic Block Models. They have been
studied by various different communities, through the lens of statistics, com-
puter science, machine learning, information theory, social sciences, statistical
physics and mathematics. For general surveys on community detection and
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SBMs we highlight the works by Fortunato et al. (2010) [2], Abbe (2017) [7]
and Lee el al. (2019) [30].

A large body of literature on SBMs focuses on community recovery,
specifically on the three recovery requirements described in the previous
section, and on the problem of estimating the affinity matrix of an SBM
by observing a realization of the graph (often called parameter estimation or
parameter learning). Special cases of the SBM, such as the (balanced) Planted
Partition Model are often considered. We briefly summarize a few results in
this section.

Decelle el al. (2011) [31] address both community recovery and parameter
learning. Their approach is rooted in a statistical physics perspective, and uses
the cavity method of spin glasses to analyze the phase diagram. That is, they
show that there is a range of parameter values where recovery is impossible,
another region where it is possible, but exponentially hard, and finally a region
where a belief propagation algorithm exactly recovers the communities and
model parameters (in the asymptotic limit).

Abbe et al. (2015) [8] discuss a sharp threshold phenomenon (also called
phase transition) for exact recovery in the balanced PPM, PPbal(p, q), with
two communities (also denoted planted bisection model). Specifically, they
show that recovering the underlying communities with high probability (as
n → ∞) is possible if |

√
a −
√
b| >

√
2 and impossible if |

√
a −
√
b| <

√
2,

where p = a log(n)/n and q = b log(n)/n are constants with a > b (i.e. strong
assortativity is assumed). They introduce an efficient algorithm based on a
semidefinite programming (SDP) relaxation of the MLE model and prove that
it succeeds in exact recovery whenever it is information-theoretically possible.
The algorithm is then proven by [32] to exactly recover the communities also
at the threshold, as conjectured by [8].

Almost exact recovery is proven to be possible for the planted bisection
model if and only if n(p− q)2/(p+ q) diverges (as n→∞) [33], and the result
is extended to general SBMs in [34].

For weak recovery, [35, 36] prove the existence of a sharp threshold
phenomenon for the planted bisection model, as conjectured by [31]. Specif-
ically, if p = a/n and q = b/n, then weak recovery is possible if and only if
(a− b)2 > 2(a+ b).

Abbe and Sandon (2015) [34] investigate the phase transition phe-
nomenon for the general (unbalanced) SBM with multiple communities. In
particular they characterize a recovery threshold in terms of a proposed diver-
gence function and introduce efficient algorithms for partial and exact recovery
in different asymptotic regimes.
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Various works propose algorithms for community recovery based on
SDP relaxations of MLE [37, 38, 39], and prove results related recovering
communities in SBMs with general K, and with an implicit assumption of
strong assortativity. Amini et al. (2018) [24] propose an SDP relaxation which
is tighter than previous ones, and that works for a wider class of SBMs,
including for disassortative structures.

Del Pia et al. (2020) [29] consider the problem of exact recovery for the
assortative planted bisection model and discuss the theoretical performance
of linear programming (LP) relaxations of the minimum bisection problem
for community recovery. They derive sufficient and necessary conditions for
recovery using the LP relaxation for different asymptotic regimes.

Abbe (2017) [7] surveys the main recent developments on community de-
tection for the PPM as well as for general SBMs, with a focus on community
recovery and the characterization of threshold phenomena, for different recov-
ery requirements and different asymptotic regimes. The survey also discusses
the performance of some algorithms in recovering communities, for example
based on SDP, belief propagation and spectral methods [40, 41, 42, 43]. For
parameter learning, the survey reviews consistency analyses and optimality
guarantees of different approaches, in the sense of recovering the true under-
lying parameters of the SBM in the asymptotic limit.

Algorithms based on expectation-maximization for MLE have been in-
vestigated, for example by [22] for the SBM with two communities. However,
their method is practical only for small graphs. For large graphs they introduce
a Bayesian estimation method based on Gibbs sampling. The EM algorithm is
also used to maximize the pseudo-likelihood of the SBM parameters in Amini
et al. (2013) [44]. The general idea of pseudo-likelihood is to approximate the
likelihood by ignoring some of the dependency structure of the data and thus
making the model more tractable.

In the Bayesian framework, other algorithms have been proposed for the
MLE problem, for example Markov Chain Monte Carlo (MCMC) methods
[45, 46, 47], variational methods [48, 49, 50, 51] and an algorithm based on
belief propagation [31] (as mentioned above).

Some authors have explored exact solution methods for community
detection based on modularity maximization [27, 52, 53], which is known to
be NP-hard [54]. Newman (2016) [19] shows that modularity maximization
is equivalent to MLE of the PPM. The problem of modularity maximization
is directly formulated as a mixed integer quadratic program (MIQP) by Xu
et al. (2007) [52], and solved using a branch-and-bound method. They discuss
the use symmetry-breaking constraints to improve the efficiency of the branch-
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and-bound exploration. Aloise et al. (2010) [27] employ techniques based on
column generation to improve on previous works [52, 53], reporting a reduction
in computing time, and solving larger instances up to 512 vertices exactly (vs.
105 vertices in previous works). Modularity maximization (equivalently MLE
of the PPM) is, however, a very specialized case of community detection, and
no exact solution algorithms are known for MLE of the general SBM.

In a broader sense, this dissertation has connections with other works
that investigate the use of techniques from mixed integer optimization applied
to classical machine learning models. Mixed integer optimization has been
recently used to learn optimal decision trees [55], Gaussian mixture models
(GMM) [56, 57], ramp-loss support vector machines (SVM) [58] and for
Bayesian network structure learning [59], just to name a few examples. Recent
surveys [60, 61] discuss various commonly used machine learning models from
a mathematical optimization perspective.

3.4
Contribution

The main contribution of this work is to make a first step towards de-
veloping exact solution methods for the MLE problem (described by Equation
3-2) of community detection with the DCSBM. Our solution methods are based
on mathematical programming. To the best of our knowledge, this is the first
work to address the problem with an exact approach. In our opinion, the study
of exact algorithms are important for many reasons. Here we emphasize a few
points:

• Exact algorithms provide benchmarks of exactly solved instances which
can be used to evaluate the performance of heuristics. Studying the
optimal solutions of a problem may provide insights on strategies to
improve the current heuristic approaches.

• Exact algorithms may be stopped before finishing execution, if the run
time exceeds a desired time limit. In this case the algorithm provides the
best found solution, together with a bound on the solution optimality.
However, the optimal solution may often be found at an early stage of
the optimization process.

• There is active research in the field of mathematical programming and
optimization solvers are regularly being improved, enabling the solution
of increasingly bigger problems. Even though most MIP problems are
NP-hard, it is now possible to solve instances with complexity and
dimensions that were impractical a few decades ago. This increase in
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computational power of optimization solvers is largely due to algorithmic
improvements which, coupled with hardware improvements over the last
decades, has resulted in speedup factors of the order of 1011 (as estimated
by Bixby, 2012 [62] and later by Bertsimas et al., 2017 [55]).

Despite the advantages of exact solution methods, their use is currently
still intractable for many NP-hard problems and heuristic approaches are
the only option for finding solutions in a reasonable computing time. Good
heuristics may often find solutions which closely approximate the optimum.
Improving heuristic approaches may also lead to the development of more
efficient exact methods, as many exact algorithms contain steps or sub-
problems which can be solved heuristically. A secondary contribution of this
work is to compare the proposed exact methods with three simple heuristic
approaches based on the EM algorithm through computational experiments.
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4
Exact Solution Approaches

This chapter introduces mathematical programming formulations for the
MLE problem given by Equation (3-2). We first introduce a descriptive formu-
lation based on a mixed integer non-linear programming (MINLP) model. Dif-
ferent techniques are then employed to linearize the model, leading to a mixed
integer linear programming (MILP) formulation. To further improve com-
putational efficiency, we discuss the use of bound-tightening and symmetry-
breaking techniques.

4.1
Descriptive Formulation

We introduce the binary variable zir, which takes value 1 if vertex i ∈ V
is assigned to community r ∈ C and 0 otherwise, where C = {1, . . . , K} is
the set of possible communities. The continuous variables ωrs, for r, s ∈ C,
represent the elements of the connectivity matrix Ω. The MLE problem (3-2)
can be modeled as the following mixed integer non-linear program (MINLP),
where we minimize the negative log-likelihood:

minimize
Z,Ω

1
2

n∑
i,j

K∑
r,s

fij(ωrs) zirzjs (4-1)

subject to
K∑
r=1

zir = 1, ∀i ∈ V (4-2)

zir ∈ {0, 1}, ∀i ∈ V, r ∈ C (4-3)

ωrs ∈ R+, ∀r, s ∈ C (4-4)

where
fij(ωrs) = −Aij logωrs + kikj

2m ωrs. (4-5)
The objective function represents the expression for the MLE problem and
constraints (4-2) enforce that each vertex is assigned to exactly one community.
This model can be solved to optimality by global optimization solvers, such
as Couenne [63], for small-sized networks. However, solution time quickly
increases with the size of the networks, to such an extent that this solution
approach becomes impractical for networks with as few as 16 vertices. In
the next sections we propose some techniques to linearize Model (4-1)-(4-4),
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resulting in a mixed integer linear program (MILP), which is empirically shown
to speed-up solution time of the MINLP.

4.2
Mixed Integer Linear Programming Formulation

The linearization of the MINLP formulation is performed in a few steps.
We first consider the non-linear function fij(ωrs) and propose a linearization
by piecewise outer-approximation. For any point ω ∈ R+ in the domain, the
function fij(ω) can be approximated by its tangent aijω̃ ω+ bijω̃, calculated at
ω̃, where the coefficients aijω̃ and bijω̃ are given by:

aijω̃ = −Aij
ω̃

+ kikj
2m , (4-6)

bijω̃ = fij(ω̃)− aijω̃ ω̃ = Aij(1− log ω̃). (4-7)
The function fij is convex everywhere in its domain, for Aij > 0, since:

∂2fij
∂ω2 = Aij

ω2 > 0, ∀ω ∈ R+. (4-8)

Hence, the value of fij is always greater than or equal to its tangent at any
point:

fij(ω) ≥ aijω̃ ω + bijω̃, ∀ω ∈ R+, ∀ω̃ ∈ R+. (4-9)
By making use of this property, we introduce variables fijrs to represent the
value of fij(ωrs), and reformulate Model (4-1)-(4-4) in an equivalent form:

minimize
Z,Ω,F

1
2

n∑
i,j

K∑
r,s

fijrs zirzjs (4-10)

subject to
K∑
r=1

zir = 1, ∀i ∈ V (4-11)

fijrs ≥ aijω̃ ωrs + bijω̃, ∀i, j ∈ V, ∀r, s ∈ C,∀ω̃ ∈ R+ (4-12)

zir ∈ {0, 1}, ∀i ∈ V, ∀r ∈ C (4-13)

ωrs ∈ R+, ∀r, s ∈ C (4-14)

fijrs ∈ R, ∀i, j ∈ V, ∀r, s ∈ C. (4-15)

This model contains an infinite number of constraints of type (4-12), for every
ω̃ ∈ R+, which are necessary for the equivalence to hold.

The objective function is still cubic in the variables and is linearized next.
Let yijrs denote the product of the binary variables zir and zjs in the objective
function, yijrs := zirzjs. The product of two binary variables can be expressed
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Figure 4.1: Piecewise linear outer-approximation of the function fij with 5
(left) and 10 (right) equally spaced breakpoints

as a set of linear constraints:

zir − yijrs ≥ 0, (4-16)

zjs − yijrs ≥ 0, (4-17)

1− zir − zjs + yijrs ≥ 0. (4-18)

As a result, the objective function is then expressed as fijrsyijrs which is a
product of a continuous and a binary variable.

To linearize the expression fijrs yijrs we introduce continuous variables
xijrs := fijrs yijrs = fijrs zirzjs. The non-linear expression fijrs yijrs can be
linearized with the big-M technique, by introducing additional constraints:

xijrs ≤M yijrs, (4-19)

xijrs ≥M yijrs, (4-20)

xijrs ≥ fijrs −M(1− yijrs). (4-21)

Constraints (4-21) can be combined with constraints (4-12), yielding:

xijrs ≥ aijω̃ ωrs + bijω̃ −M(1− yijrs), ∀ω̃ ∈ R+. (4-22)

It is well known that formulations with big-M constants tend to suffer from
a weak continuous relaxation [58, 64], if the values for the lower and upper
bounds, M and M , are not tight enough. Section 4.2.2 proposes some natural
values for these bounds. The resulting model is a mixed integer linear program
(MILP), which can be solved by the branch-and-bound method. The complete
formulation of the MILP is available in Appendix B. The next sections address
some challenges when solving the MILP in practice.
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4.2.1
Dynamic Constraints Generation

As mentioned previously, the MILP model has an infinite number of
constraints of the type (4-22). To solve it in practice, the method only considers
a small finite set of these constraints, given by a set of break-points ω̃p, indexed
by p ∈ B. New constraints are dynamically introduced in the model during
the solution process. In practice this can be done by making use of the lazy
constraints callback, which is available in standard mixed integer programming
(MIP) solvers, such as Gurobi [65] and CPLEX [66]. Whenever an integer
feasible solution is found during the branch-and-bound process, the callback
checks if any of the constraints given by (4-22) are violated. If the solution
violates any of these constraints, the solution is discarded and the violated
constraints are included in the model. In effect the method iteratively refines
the approximation of the function fij until a desired pre-defined precision is
achieved.

4.2.2
Bounds Tightening

We start this section by deriving upper and lower bounds on ωrs. Given
a fixed assignment of vertices to communities, the optimal value of ωrs can be
found by solving a convex minimization problem by differentiation. We show
that ωrs is bounded above by 2mρ (the value of ρ will be defined shortly).

ω∗rs = 2m
( ∑

i,j Aijzirzjs∑
i,j kikjzirzjs

)
≤ 2mρ (4-23)

Inequality (4-23) is equivalent to:∑
i,j

(
1
ρ
Aij − kikj

)
zirzjs ≤ 0 (4-24)

which is satisfied if:
ρ ≥ Aij

kikj
, ∀i, j ∈ V (4-25)

Thus, by defining ρ := maxi,j
{
Aij

kikj

}
we arrive at a valid upper bound:

ωrs ≤ 2m ·max
i,j

{
Aij
kikj

}
(4-26)

Let ωLrs ≈ 0 and ωUrs denote the lower and upper bounds, respectively, on ωrs.
We rely on these bounds to derive bounds Mijrs ≤ fijrs ≤Mijrs.

Recall that fij(ωrs) = (−Aij logωrs + kikj

2m ωrs). If Aij = 0, then the
expression simplifies to:

fij(ωrs) = kikj

2m ωrs (4-27)
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and therefore fijrs can be bounded by 0 ≤ fijrs ≤ kikj

2m ω
U
rs.

Otherwise, Aij 6= 0, then a lower bound can be obtained by calculating
the global minimum of fij(ωrs) with respect to ωrs. The minimum can be found
by solving ∂fij

∂ωrs
= −Aij

ωrs
+ kikj

2m = 0, (4-28)

implying
ω̂rs = 2mAij

kikj
, (4-29)

and therefore

Mijrs = −Aij log 2mAij

kikj
+ Aij = Aij

(
1− logAij + log kikj

2m

)
. (4-30)

Since fij(ωrs) is convex, the upper bound Mijrs can be defined by calculating
the function value at the extreme points of the domain [ωLrs, ωUrs]:

Mijrs = max{fij(ωLrs), fij(ωUrs)}. (4-31)

Overall, the upper and lower bounds are given by:

Mijrs :=


kikj

2m ω
U
rs, if Aij = 0

max{fij(ωLrs), fij(ωUrs)}, if Aij 6= 0
(4-32)

Mijrs :=

 0, if Aij = 0
Aij(1− logAij + log kikj

2m ), if Aij 6= 0
(4-33)

In the experiments ωLrs is set to a small constant value, since the function fij
is not defined for ωrs = 0.

4.2.3
Symmetry-breaking Constraints

In the formulations discussed above, any permutation of the group indices
in the community assignment variables Z leads to an equivalent solution. Thus,
for each solution there are always K! equivalent ones, causing an inefficient
exploration during the branch-and-bound process. To circumvent this issue,
Frank Plastria (2002) [67] proposed a set a linear constraints that limit the set
of feasible solutions by eliminating solutions which are equivalent. This is done
by enforcing the model to accept only lexicographically minimal solutions, i.e.
by forcing community r to always contain the lowest numbered object (vertex)
which does not belong to any of the previous communities 1, . . . , r − 1. As
shown by [67], this can be achieved by including the following constraints to
the model:

z11 = 1 (4-34)
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j−1∑
i=2

r−1∑
l=1

zil −
r∑
l=1

zjl ≤ j − 3, ∀r ∈ {2, . . . , K − 1},∀j ∈ {r, . . . , n} (4-35)

The last cluster K is not associated to any constraint, as it will automatically
contain all remaining objects which do not belong to any of the previous
clusters. These constraints effectively break the permutation symmetry of the
problem and are shown to provide speed-ups to the solution method in the
computational experiments.
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5
Heuristic Solution Approaches

Heuristic methods usually solve a problem in reduced computing time
when compared to exact methods, at the expense of having no guarantee
of optimality of the solution. The original method proposed by Karrer and
Newman [1] for community detection using the DCSBM is based on a local
search heuristic on the space of community assignments. Inspired by their
approach we introduce three natural variants of the expectation-maximization
(EM) algorithm, and compare them to the exact methods of the previous
chapter. In the next sections we review the main aspects of the general EM
algorithm and describe the three variants proposed for this problem.

5.1
Expectation-Maximization Algorithm

The expectation-maximization (EM) algorithm was introduced by Demp-
ster et al. in 1977 [68] as a general iterative scheme for finding the parameter
estimates of maximum likelihood or maximum a posteriori probability (MAP)
of statistical models with (unobserved) latent variables. Each iteration of the
algorithm alternates between an expectation step (E-step) and a maximization
step (M-step). Each step is guaranteed to increase the log-likelihood function,
and therefore it always finds a (local) optimum. The EM algorithm has been
applied to a variety of models in machine learning including Gaussian mix-
ture models (GMM) and hidden Markov models (HMM) [69, 70], and in data
clustering [71, 72].

The EM algorithm is a heuristic approach since there is no guarantee
that the method converges to the global optimum of maximum likelihood. An
instantiation of the EM algorithm for the MLE problem of the DCSBM is
described in Algorithm 1. The next sections describe each step of the algorithm
in detail. For the E-step three variants are introduced. In the first variant
(E-LS1) the algorithm searches for community assignments Z that increase
the value of the likelihood function via a simple local search heuristic. The
second variant (E-LS2) similarly performs a local search on the assignments
Z, however the connectivity matrix Ω is re-estimated at every evaluation of
the likelihood function, and thus this variant is more tightly integrated with

DBD
PUC-Rio - Certificação Digital Nº 1820984/CA



Chapter 5. Heuristic Solution Approaches 37

the M-step. Finally, the third variant (E-exact) is based on a formulation of
the E-step as an integer quadratic program, which can be solved exactly using
MIP optimization solvers.

Algorithm 1: EM algorithm
1 (Randomly) initialize assignments of vertices to communities Z;
2 repeat
3 (M-step) Estimate the connectivity matrix Ω by maximizing the

likelihood, using the current assignments Z;
4 (E-step) Search for assignments Z which maximize the

likelihood for the current estimate Ω (from M-step);
5 until The likelihood function can no longer be improved by these

two steps;

5.1.1
Maximization Step (M-step)

The maximization step consists in estimating the parameters Ω which
maximize the likelihood function, given a fixed assignment of vertices to
communities Z. The optimal value for ωrs can be found by solving a concave
maximization problem, by differentiating Equation (4-1). The solution can be
written in a closed-form expression:

ω∗rs = 2m
( ∑

i,j Aijzirzjs∑
i,j kikjzirzjs

)
= 2m ·mrs

κrκs
(5-1)

where mrs = ∑n
i,j Aijzirzjs is the number of edges between groups r and s, and

κr = ∑n
i kizir is the sum of the degrees of the vertices in group r. This is a

polynomial-time step, since calculating ωrs for all r, s ∈ {1, . . . , K} has time
complexity O(K2n2).

5.1.2
Expectation Step (E-step)

The expectation step consists in searching for community assignments Z
that maximize the likelihood, given the current estimate for the affinity matrix
Ω. This step corresponds to an NP-hard combinatorial problem [44], which
involves optimizing over all possible community assignments. Three variants
for the E-step are discussed next which, combined with the M-step, result in
three variants for the EM algorithm.

Local search on the community assignment variables (E-LS1) The first
variant is based on a local search method where the value of Ω remains fixed
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and we search for community assignments Z that maximize the likelihood func-
tion. We do this by iterating over the vertices of the graph and reassigning a
vertex to a different community whenever the relocation entails an improve-
ment in the likelihood function. Namely, for each vertex i and for each commu-
nity r, we consider relocating vertex i to community r. If the relocation results
in an improvement of the likelihood function, we keep this assignment. The
procedure is repeated until no more improving relocation can be identified.

Local search integrated with M-step (E-LS2) In this variant the value of
Ω is re-estimated (with the M-step) every time a relocation of a vertex is con-
sidered, and therefore the expectation and maximization steps become more
tightly integrated. Algorithm 2 describes both E-LS1 and E-LS2 variants in a
single pseudo-code. The for loop in the algorithm has complexity O(K3n3),
since each evaluation of the likelihood function requires O(K2n2) elementary
operations.

Algorithm 2: Expectation step (E-LS1 and E-LS2)
1 Function ExpectationStep(Ω, Z):
2 L ← logP (A|Ω,Z);
3 repeat
4 for each vertex i ∈ V and community r ∈ C do
5 Consider Z′ constructed from Z by relocating vertex i to

community r;
6 (E-LS1) Ω′ ← Ω;
7 (E-LS2) Ω′ ← MaximizationStep(Z′);
8 L′ ← logP (A|Ω′,Z′);
9 if L′ > L then

10 Apply relocation and update solution:
Ω← Ω′; Z← Z′; L ← L′;

11 end
12 end
13 until No improving relocation can be found;
14 return Z;

Exact community assignments (E-exact) The expectation step can be
solved exactly, by formulating it as an integer quadratic program (IQP) as
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follows:

minimize
Z,Ω

1
2

n∑
i,j

K∑
r,s

fij(ωrs) zirzjs (5-2)

subject to
q∑
r=1

zir = 1, ∀i ∈ V (5-3)

zir ∈ {0, 1}, ∀i ∈ V, r ∈ C (5-4)

In this model, we search for the community assignments Z which maximize
the likelihood, for a fixed connectivity matrix Ω. Since ωrs is fixed, the term
fij(ωrs) in the objective function is constant. This is an NP-hard problem,
however we can solve it to optimality using standard MIP solvers, such as
Gurobi [65] and CPLEX [66]. The standard solution approach employed by the
solvers is based on the branch-and-cut method. The EM algorithm that results
from this variant is an example of a matheuristic [73, 74], which combines the
use of metaheuristics with mathematical programming techniques.
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6
Computational Experiments and Analyses

This chapter discusses the computational experiments carried out to eval-
uate the proposed methods and to assess their performance. In the experiments
we evaluate the two exact solution approaches, the MINLP (from Section 4.1)
and the MILP (from Section 4.2), and compare them with the three heuristic
approaches based on the EM algorithm, described in Chapter 5. The main
goals of the computational experiments are twofold.

1. We compare the performance of the proposed exact methods in terms of
solution time.

2. We evaluate how far the heuristic solutions given by the three variants of
the EM algorithm are from the true optimum of maximum likelihood, by
comparing them to the optimal solution and bounds found by the exact
methods.

The computational experiments were performed on an Intel Xeon E5-
2620 2.1 GHz processor machine with 128 GB of RAM memory and CentOS
Linux 7 (Core) operating system. The high-level programming language used in
the implementation was Julia [75], and the package JuMP [76] was used as the
modeling language for the exact methods. The underlying optimization solvers
adopted for the exact methods were Couenne [63] as the global optimization
solver for the MINLP and CPLEX [66] for the MILP.

6.1
Instances

Two data sets were generated for the computational experiments, denoted
S1 and S2. Both are composed of synthetic graphs produced by the DCSBM.
Synthetic graphs are useful for benchmarking since they allow us to control
the factors that might influence the difficulty of community detection, such
as network size and different types of community structure. We restricted our
experiments to small undirected networks, with a number of vertices n ranging
from 8 to 16 and a number of edges m ranging from 4 to 115, for which the
exact methods can find the global optimum in a reasonable time.
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The first data set S1 considers the simplest case when K = 2 communi-
ties. We generate synthetic graphs with varying sizes: n ∈ {8, 10, 12, 14, 16}.
Since K = 2, the affinity matrix Ω of the generative model has three param-
eters: two diagonal elements ω11, ω22 and one off-diagonal element ω12 = ω21.
We sample values for each of the three parameters from intervals centered at
ωin and ωout, respectively for the diagonal and off-diagonal parameters, in the
following way. For each ωin, ωout ∈ {0.1, 0.4, 0.6, 0.9}, such that ωin 6= ωout,
we sample ω11, ω22 from U(ωin − 0.1, ωin + 0.1) and we sample ω12 from
U(ωout − 0.1, ωout + 0.1), where U(a, b) represents the uniform distribution in
the interval [a, b] ⊆ R. This results in a total of 4 × 3 = 12 combinations of
values for the interval centers (ωin, ωout). Out of the 12 combinations there are
six assortative and six disassortative structures, as shown in Table 6.1. To ac-
count for variability due to randomness in the generative model, 10 instances
are generated for each combination, yielding a total of 5 × 4 × 3 × 10 = 600
network instances in the data set.

Number of vertices ωin ωout Structure

n ∈ {8, 10, 12, 14, 16}

0.1
0.4 disassortative
0.6 disassortative
0.9 disassortative

0.4
0.1 assortative
0.6 disassortative
0.9 disassortative

0.6
0.1 assortative
0.4 assortative
0.9 disassortative

0.9
0.1 assortative
0.4 assortative
0.6 assortative

Table 6.1: Combinations of values of the interval centers (ωin, ωout) that are
used in the generation of the synthetic data set S1.

The second data set S2 is composed of synthetic graphs generated by the
DCSBM with the number of clusters K ∈ {2, 3} and three levels of assortative
community strength: low, medium and high. For each level of community
strength the diagonal and off-diagonal elements of the affinity matrix Ω are
drawn from a uniform distribution in the corresponding interval given by Table
6.2. All instances in data set S2 are generated by strongly assortative models.
The number of vertices again varies with n ∈ {8, 10, 12, 14, 16}. A total of 20
instances was generated for each configuration, totalling 2× 3× 5× 20 = 600
instances. Table 6.3 summarizes the defining features of data set S2.
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LOW MEDIUM HIGH
ωrr [0.4, 1.0] [0.6, 1.0] [0.8, 1.0]
ωrs (r 6= s) [0.2, 0.4] [0.1, 0.3] [0.0, 0.2]

Table 6.2: The level of community strength (low, medium or high) defines
the ranges of possible values for the diagonal and off-diagonal elements of the
affinity matrix Ω.

Number of communities Number of vertices Community strength

K ∈ {2, 3} n ∈ {8, 10, 12, 14, 16}
LOW

MEDIUM
HIGH

Table 6.3: Summary of the defining features of data set S2.

6.2
Performance of the exact methods

For each instance in data sets S1 and S2 we run the two exact methods
(MINLP and MILP) with a time limit of 600 seconds. To assess the impact
of the proposed symmetry-breaking constraints in the solution time, we run
each method twice: once with symmetry-breaking constraints (SBC) and once
without symmetry-breaking constraints (N-SBC).

The solution times for the exact methods are presented in Table 6.4 for
data set S1 and in Table 6.5 for data set S2. The values reported in Table
6.4 correspond to average solution times (in seconds) over 10 instances, for
each n ∈ {8, 10, 12, 14, 16} and for each combination of (ωin, ωout). The results
reported in Table 6.5 are average solution times (in seconds) over 20 instances,
for each K ∈ {2, 3}, n ∈ {8, 10, 12, 14, 16} and for each level of community
strength. The values reported in parentheses indicate the number of instances
for which the method could not find the optimal solution within the time limit.

As visible in these experiments, the MILP is notably faster than the
MINLP, for both data sets. When K = 2, the MILP is able to arrive at the
optimal solution of maximum likelihood for all instances up to n = 14, while
the MINLP is already unable to find the optimum for a few instances with
14 vertices. With K = 2 and n = 16, both methods struggle to find the
optimal solution within the time limit. When K = 3, we are able to arrive at
optimal solutions up to 12 nodes, using the MILP with SBC (except for a few
instances). When K = 3 and n = 16, none of the methods is able to find the
optimal solution for any instance.

The use of symmetry-breaking constraints has a significant impact on
solution time for both formulations. Figure 6.1 illustrates the impact of using
symmetry-breaking constraints as a function of the number of vertices, for data
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MILP MINLP
n ωin ωout N-SBC SBC N-SBC SBC
8 0.1 0.4 0.8 0.6 4.2 3.3

0.6 1.2 0.8 6.4 5.0
0.9 1.2 0.8 6.9 5.3

0.4 0.1 0.9 0.7 4.4 3.5
0.6 2.0 1.2 9.0 7.2
0.9 2.1 1.3 10.4 8.1

0.6 0.1 1.1 0.8 5.6 4.6
0.4 2.0 1.2 9.3 7.5
0.9 2.8 1.7 12.5 10.1

0.9 0.1 1.0 0.8 7.1 5.3
0.4 2.4 1.5 11.1 8.8
0.6 2.6 1.6 12.2 9.4

10 0.1 0.4 3.7 2.6 18.5 15.5
0.6 3.6 2.3 18.4 12.9
0.9 4.2 2.6 24.3 17.7

0.4 0.1 3.1 2.1 15.0 12.4
0.6 8.5 5.4 32.1 22.7
0.9 9.0 5.9 35.6 25.1

0.6 0.1 4.1 2.8 23.6 16.6
0.4 7.1 4.9 29.2 23.2
0.9 12.8 7.9 41.8 30.9

0.9 0.1 4.6 3.0 25.2 19.1
0.4 8.4 5.5 35.2 25.6
0.6 12.1 7.1 41.0 29.9

12 0.1 0.4 11.3 7.0 56.4 37.8
0.6 11.1 7.7 66.6 44.1
0.9 13.6 10.1 83.3 56.6

0.4 0.1 10.4 7.0 58.0 39.4
0.6 37.8 23.0 130.4 77.5
0.9 36.0 21.6 111.4 74.9

0.6 0.1 14.5 8.1 79.6 44.8
0.4 35.0 19.4 109.2 73.0
0.9 49.4 27.8 150.3 91.2

0.9 0.1 21.0 12.1 93.6 60.7
0.4 33.5 18.9 120.8 79.4
0.6 46.4 26.9 136.7 91.9

14 0.1 0.4 35.1 22.1 226.0 138.2
0.6 46.8 23.8 310.8 162.4
0.9 45.3 29.2 301.5 152.9

0.4 0.1 58.2 28.1 277.0 162.4
0.6 180.8 98.0 450.0 270.0
0.9 217.5 111.4 469.2 271.9

0.6 0.1 52.7 29.0 270.6 157.4
0.4 152.0 75.2 (1) 465.9 266.2
0.9 252.1 130.3 (5) 546.5 305.4

0.9 0.1 62.8 33.2 339.8 186.4
0.4 200.2 115.6 (2) 520.5 295.3
0.6 236.0 122.0 (1) 542.5 328.1

16 0.1 0.4 262.8 122.7 (10) 652.7 (7) 591.9
0.6 141.1 88.5 (9) 623.6 (6) 553.4
0.9 165.7 93.0 (9) 633.2 (5) 565.2

0.4 0.1 (1) 247.0 140.8 (8) 603.9 (5) 540.3
0.6 (9) 579.9 (1) 471.0 (10) 649.4 (10) 648.1
0.9 (7) 528.6 (2) 416.9 (10) 644.7 (10) 644.2

0.6 0.1 (2) 282.0 (1) 170.1 (8) 642.0 (4) 516.2
0.4 (9) 599.7 (1) 417.5 (10) 650.8 (9) 646.8
0.9 (10) 600.0 (5) 561.4 (10) 641.4 (10) 642.5

0.9 0.1 (1) 177.3 109.6 (8) 625.8 (2) 484.4
0.4 (9) 592.3 (2) 484.6 (10) 642.0 (10) 643.8
0.6 (10) 600.0 (6) 585.3 (10) 638.6 (10) 639.7

Table 6.4: Solution times of the exact methods (MILP vs MINLP) for data
set S1, with symmetry-breaking constraints (SBC) and without symmetry-
breaking constraints (N-SBC).
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Community MILP MINLP
K n strength N-SBC SBC N-SBC SBC
2 8 low 3.4 2.0 16.8 13.8

medium 3.2 1.9 15.2 12.2
high 2.4 1.4 12.5 11.1

10 low 6.2 4.0 39.4 28.9
medium 5.8 3.9 35.9 26.4
high 3.9 2.5 33.0 27.6

12 low 43.7 17.1 188.0 122.0
medium 25.2 11.4 179.9 121.5
high 16.2 8.0 138.5 93.2

14 low 159.8 89.9 (15) 615.4 427.5
medium 151.2 82.1 (8) 557.6 349.2
high 78.9 38.2 (6) 489.7 330.1

16 low (16) 576.4 (10) 482.8 (20) 645.9 (20) 647.7
medium (14) 565.6 (8) 455.3 (20) 674.4 (20) 677.4
high (5) 326.3 216.5 (17) 639.0 (14) 591.3

3 8 low 30.5 8.7 195.5 70.4
medium 31.1 7.3 150.5 58.9
high 22.7 5.9 123.4 61.1

10 low 190.0 30.0 (13) 562.7 238.7
medium 109.9 22.2 (15) 590.2 251.0
high 58.9 12.0 (8) 453.5 153.3

12 low (18) 584.1 333.4 (20) 658.4 (20) 657.0
medium (16) 532.9 (2) 316.7 (20) 669.8 (20) 669.0
high (6) 398.6 103.5 (20) 644.0 (18) 624.2

14 low (20) 600.0 (20) 600.0 (20) 650.1 (20) 653.8
medium (20) 600.0 (20) 600.0 (20) 647.4 (20) 652.0
high (20) 600.0 (9) 502.8 (20) 656.5 (20) 657.6

16 low (20) 600.0 (20) 600.0 (20) 639.2 (20) 640.3
medium (20) 600.0 (20) 600.0 (20) 615.8 (20) 615.6
high (20) 600.0 (20) 600.0 (20) 644.0 (20) 647.1

Table 6.5: Solution times of the exact methods (MILP vs MINLP) for data
set S2, with symmetry-breaking constraints (SBC) and without symmetry-
breaking constraints (N-SBC).
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Figure 6.1: Impact of symmetry-breaking constraints on solution times for the
MINLP (left) and the MILP (right) for data set S1. For each method the speed
ratio is the solution time of the model without SBC, divided by the solution
time of the model with SBC.

set S1. Instances for which either method could not find the optimal solution
are not included in the plot. Even in this simple case with two communities,
adding symmetry-breaking constraints consistently improves the solution time
of both exact methods, for the great majority of instances. The improvement
becomes slightly more evident as the number of vertices increases, with solution
times up to almost 3x faster.
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Figure 6.2: Solution time comparison of the MILP against the MINLP model,
without (left) and with (right) SBC, for data set S1. Here the speed ratio is
the solution time of the MINLP divided by the solution time of the MILP.

A comparison of the solution times of both exact methods is presented
in Figure 6.2 for data set S1, as a function of the number of vertices. As n
increases, the variance in the distribution of the speed ratio increases. The
speed ratios are nonetheless consistently greater than 1, meaning that the
method based on the MILP is consistently faster than the MINLP, regardless
of whether symmetry-breaking constraints are included. The MILP improves
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the solution time of the MINLP up to approximately 18x in the most extreme
cases.

The MILP with symmetry-breaking constraints is clearly the formulation
with the best performance. Figures 6.3 and 6.4 illustrate the solution times of
the MILP with SBC for data sets S1 and S2 as a function of the features of
each data set.
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Figure 6.3: Solution times (in seconds, in log scale) of the MILP with SBC for
data set S1 as a function of the number of vertices and the parameter values
(ωin, ωout).
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Figure 6.4: Solution times (in seconds, in log scale) of the MILP with SBC
for data set S2 as a function of the number of vertices n, the number of
communities K and the level of community strength.

6.3
Performance of the heuristic methods

To evaluate the quality of the solutions found by the heuristic approaches
we compare their solution to the solution found by the exact methods. For each
instance in data sets S1 and S2, we run the three EM variants for 50 trials
(with different random starts). For each instance the relative percentage gap
is calculated as:

DBD
PUC-Rio - Certificação Digital Nº 1820984/CA



Chapter 6. Computational Experiments and Analyses 47

Gap(%) = OBJ− UB
UB (6-1)

where OBJ is the objective value of the heuristic solution and UB (upper
bound) is the objective value of the best integer feasible solution found by the
MILP with SBC.

For data set S1, Table 6.6 presents the relative percentage gap and
solution time (in seconds) of the best heuristic solution (out of a total of
50 trials) for each algorithm.

For almost all instances in data set S1 the heuristic approaches are ca-
pable of finding the optimal solution. Note that when n = 16 and (ωin, ωout) =
(0.9, 0.6) the reported gap is negative, which means that the heuristic objective
value is better than the one found by the exact method (the exact methods
are not able to find all optimal solutions within the time limit in this case).

Table 6.7 shows similar results for data set S2. When K = 3 and n = 16,
all percentage gap values are negative indicating that the heuristic approaches
outperform the exact methods in this setting.

To illustrate how often (out of 50 trials) the optimal solution is found,
Figure 6.5 shows the (normalized) frequency with which the three EM variants
arrive at the optimal solution, for data set S1.

8 10 12 14 16
Number of vertices (n)

0.0

0.2

0.4

0.6

0.8

1.0

O
pt

im
al

so
lu

ti
on

fr
eq

ue
nc

y Heuristic method
E-LS1
E-LS2
E-exact

Figure 6.5: Normalized frequency of finding the optimal solution (in 50 trials)
for each of the three EM variants.

This frequency could be interpreted as an empirical probability that the
heuristic method finds the optimal solution. There is a large variance and the
specific frequency value is highly dependent on the instance features. However
the frequency is clearly greater than zero for almost all instances, which
corroborates with the results presented in Table 6.6, showing that the heuristics
can find the optimum of maximum likelihood with considerable probability.

We also analyze the average percentage gap (out of 50 trials): Figure 6.6
illustrates for data set S1 the average objective value for each heuristic method,

DBD
PUC-Rio - Certificação Digital Nº 1820984/CA



Chapter 6. Computational Experiments and Analyses 48

E-LS1 E-LS2 E-exact
n ωin ωout Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)
8 0.1 0.4 0.0 1.9E-04 0.0 2.4E-04 0.0 3.3E-01

0.6 0.0 1.8E-04 0.0 2.3E-04 0.0 4.2E-01
0.9 0.0 1.9E-04 0.0 2.6E-04 0.0 3.2E-01

0.4 0.1 0.0 1.4E-04 0.0 2.0E-04 0.0 4.2E-01
0.6 0.0 1.6E-04 0.0 2.3E-04 0.0 4.7E-01
0.9 0.0 1.7E-04 0.0 2.6E-04 0.0 5.8E-01

0.6 0.1 0.0 1.2E-04 0.0 1.9E-04 0.0 4.7E-01
0.4 2.7E-03 1.7E-04 0.0 2.2E-04 2.7E-03 6.0E-01
0.9 0.0 1.3E-04 0.0 2.4E-04 0.0 5.0E-01

0.9 0.1 0.0 1.3E-04 0.0 2.5E-04 0.0 4.1E-01
0.4 0.0 1.4E-04 0.0 2.5E-04 2.5E-04 5.5E-01
0.6 0.0 1.8E-04 0.0 2.2E-04 0.0 6.1E-01

10 0.1 0.4 0.0 2.8E-04 0.0 5.1E-04 0.0 5.4E-01
0.6 0.0 3.0E-04 0.0 4.1E-04 0.0 6.6E-01
0.9 0.0 2.7E-04 0.0 4.7E-04 0.0 5.4E-01

0.4 0.1 0.0 2.9E-04 0.0 3.6E-04 0.0 7.3E-01
0.6 0.0 3.0E-04 0.0 4.5E-04 0.0 7.9E-01
0.9 9.8E-04 3.5E-04 0.0 4.8E-04 0.0 7.5E-01

0.6 0.1 0.0 3.1E-04 0.0 4.0E-04 7.6E-03 6.9E-01
0.4 0.0 3.0E-04 0.0 3.9E-04 0.0 8.7E-01
0.9 0.0 3.4E-04 0.0 4.3E-04 0.0 9.7E-01

0.9 0.1 0.0 3.2E-04 0.0 4.1E-04 0.0 7.7E-01
0.4 1.5E-03 4.2E-04 0.0 5.4E-04 3.0E-04 9.0E-01
0.6 5.5E-04 2.6E-04 0.0 4.2E-04 0.0 9.3E-01

12 0.1 0.4 0.0 5.1E-04 0.0 8.3E-04 0.0 9.5E-01
0.6 0.0 4.8E-04 0.0 8.8E-04 0.0 8.3E-01
0.9 0.0 5.4E-04 0.0 7.2E-04 0.0 8.7E-01

0.4 0.1 1.0E-03 4.3E-04 0.0 6.2E-04 0.0 1.1E+00
0.6 2.9E-04 6.0E-04 0.0 9.2E-04 1.4E-03 1.3E+00
0.9 5.9E-03 6.2E-04 0.0 7.8E-04 1.2E-03 1.2E+00

0.6 0.1 0.0 5.1E-04 0.0 8.3E-04 8.0E-04 1.1E+00
0.4 0.0 4.4E-04 0.0 6.3E-04 0.0 1.3E+00
0.9 2.8E-03 6.3E-04 0.0 1.0E-03 1.2E-03 1.1E+00

0.9 0.1 0.0 5.8E-04 0.0 8.2E-04 0.0 1.1E+00
0.4 1.5E-03 6.3E-04 0.0 8.1E-04 1.5E-03 1.2E+00
0.6 5.9E-04 6.0E-04 0.0 8.3E-04 7.1E-04 1.3E+00

14 0.1 0.4 0.0 8.2E-04 0.0 1.3E-03 0.0 1.4E+00
0.6 3.6E-03 8.7E-04 0.0 1.3E-03 0.0 1.2E+00
0.9 0.0 9.9E-04 0.0 1.4E-03 0.0 1.8E+00

0.4 0.1 0.0 7.4E-04 0.0 1.3E-03 0.0 1.9E+00
0.6 8.6E-03 8.6E-04 0.0 1.2E-03 2.5E-03 1.6E+00
0.9 4.7E-03 8.2E-04 0.0 1.3E-03 2.3E-03 2.3E+00

0.6 0.1 0.0 7.8E-04 0.0 1.3E-03 0.0 4.7E+00
0.4 1.2E-03 6.4E-04 0.0 1.2E-03 1.2E-03 6.9E+00
0.9 3.5E-03 9.0E-04 0.0 1.6E-03 1.9E-03 4.5E+00

0.9 0.1 0.0 7.5E-04 0.0 1.4E-03 0.0 1.5E+00
0.4 4.7E-04 8.0E-04 1.3E-04 1.2E-03 3.2E-04 1.8E+00
0.6 1.8E-03 7.7E-04 0.0 1.4E-03 2.7E-03 1.9E+00

16 0.1 0.4 0.0 1.5E-03 0.0 2.0E-03 0.0 1.9E+00
0.6 0.0 1.4E-03 0.0 2.1E-03 0.0 1.8E+00
0.9 0.0 1.1E-03 0.0 2.0E-03 0.0 1.7E+00

0.4 0.1 1.3E-03 1.0E-03 0.0 1.8E-03 1.3E-03 6.7E+00
0.6 1.0E-03 1.5E-03 0.0 1.7E-03 0.0 8.2E+00
0.9 4.0E-03 1.5E-03 0.0 2.4E-03 4.8E-03 7.6E+00

0.6 0.1 1.5E-04 1.3E-03 0.0 1.7E-03 0.0 6.1E+00
0.4 0.0 1.2E-03 0.0 2.0E-03 2.7E-04 2.6E+00
0.9 4.9E-04 1.3E-03 0.0 1.7E-03 9.7E-04 2.9E+00

0.9 0.1 0.0 1.2E-03 0.0 1.8E-03 0.0 2.1E+00
0.4 0.0 1.2E-03 0.0 2.0E-03 0.0 2.7E+00
0.6 -8.0E-04 1.1E-03 -1.2E-03 2.1E-03 -4.7E-04 2.9E+00

Table 6.6: Relative percentage gap and solution times of the heuristic methods
for data set S1.

DBD
PUC-Rio - Certificação Digital Nº 1820984/CA



Chapter 6. Computational Experiments and Analyses 49

Community E-LS1 E-LS2 E-exact

n K strength Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)
2 8 low 0.0 1.7E-04 0.0 2.0E-04 0.0 1.6E+00

medium 0.0 2.0E-04 0.0 2.2E-04 6.9E-05 1.3E+00
high 0.0 1.8E-04 0.0 2.2E-04 0.0 1.4E+00

10 low 1.2E-03 3.2E-04 0.0 4.0E-04 0.0 5.0E+00
medium 2.0E-03 3.0E-04 0.0 3.6E-04 1.8E-03 4.6E+00
high 0.0 3.8E-04 0.0 4.6E-04 0.0 4.2E+00

12 low 7.4E-04 5.3E-04 0.0 7.1E-04 1.3E-03 3.7E+00
medium 0.0 4.8E-04 0.0 7.1E-04 1.2E-03 3.4E+00
high 0.0 5.0E-04 0.0 6.7E-04 0.0 3.4E+00

14 low 0.0 8.3E-04 0.0 1.1E-03 8.0E-04 2.3E+01
medium 0.0 8.8E-04 0.0 1.3E-03 0.0 1.8E+01
high 0.0 1.1E-03 0.0 1.5E-03 3.1E-04 2.1E+01

16 low 1.8E-03 1.4E-03 0.0 1.8E-03 2.8E-03 2.7E+00
medium 9.4E-04 1.4E-03 3.9E-04 2.0E-03 7.5E-04 2.3E+00
high 0.0 1.3E-03 0.0 1.8E-03 0.0 2.2E+00

3 8 low 0.0 5.5E-04 0.0 1.0E-03 0.0 1.2E+00
medium 3.3E-03 5.0E-04 0.0 9.7E-04 1.9E-03 1.1E+00
high 0.0 5.3E-04 0.0 9.1E-04 0.0 1.1E+00

10 low 7.0E-03 9.5E-04 0.0 1.7E-03 0.0 4.9E+00
medium 3.2E-03 8.3E-04 0.0 1.7E-03 1.3E-03 4.4E+00
high 2.3E-03 8.0E-04 0.0 1.7E-03 4.5E-03 4.0E+00

12 low 5.9E-03 2.0E-03 2.2E-03 3.2E-03 5.2E-03 7.0E+00
medium 7.5E-03 2.3E-03 0.0 3.7E-03 9.0E-02 1.8E+01
high 3.3E-03 2.0E-03 0.0 3.3E-03 1.7E-03 5.6E+00

14 low -1.9E-02 3.5E-03 -2.3E-02 5.6E-03 -2.2E-02 6.1E+00
medium -1.7E-02 3.0E-03 -2.0E-02 5.8E-03 -2.0E-02 5.5E+00
high -8.8E-03 2.8E-03 -8.8E-03 5.4E-03 -4.8E-03 5.1E+00

16 low -7.2E-02 5.4E-03 -7.6E-02 8.5E-03 -7.0E-02 1.2E+01
medium -7.1E-02 5.6E-03 -7.6E-02 8.1E-03 -7.3E-02 1.2E+01
high -4.0E-02 4.9E-03 -5.2E-02 8.4E-03 -4.7E-02 8.1E+00

Table 6.7: Relative percentage gap and solution times of the heuristic methods
for data set S2.
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Figure 6.6: Average relative gap (out of 50 trials) of the heuristic solution found
by each of the three EM variants to the best integer feasible solution found by
the MILP with SBC.

as a function of the number of vertices. As visible from the figure, average gap
values are typically below 20%. There is however considerable variance, and
actual values may be as high as 120%.

Overall the proposed heuristics are shown to effectively arrive at optimal
solutions (or high quality solutions) in reduced computing time. However we
emphasize that the optimality of the heuristic solutions cannot be theoretically
guaranteed. We can only show that a heuristic solution is indeed optimal once
we have access to an exact method which can find the optimal solution and
certify optimality.

6.4
Comparison to the ground truth

In this section we compare the model parameters found by the exact
methods with the ground truth parameters used in the generation of each
instance. Namely, we compare the resulting community assignments Ẑ and
affinity matrix Ω̂ of the optimal solution of maximum likelihood to the ground
truth parameters Z∗ and Ω∗ of the generative model. When the optimum is not
known, the model parameters of the best integer feasible solution is considered
instead. In this analysis we make use of the following notations:

– A is the community agreement A(Ẑ,Z∗) between the community assign-
ments of maximum likelihood and the ground truth communities.

– G is the relative percentage gap between the value of the likelihood func-
tion evaluated using the ground truth parameters, L∗ = logP (A|Ω∗,Z∗),
and the likelihood under the DCSBM of the estimated parameters
L̂ = logP (A|Ω̂, Ẑ). Specifically:

DBD
PUC-Rio - Certificação Digital Nº 1820984/CA



Chapter 6. Computational Experiments and Analyses 51

G = L
∗ − L̂
L̂

(6-2)

– R represents how frequently the assortativity structure of the estimated
affinity matrix Ω̂ (whether assortative or disassortative) matches the
assortativity structure of the ground truth Ω∗. Here we consider that
the affinity matrix is assortative if it is strongly assortative, otherwise it
is considered disassortative.

The detailed results are presented in Tables 6.8 and 6.9 for data sets S1
and S2 respectively. Figure 6.7 shows that the agreement between the recovered
communities and the ground truth communities is higher when n is larger and
when the absolute difference |ωin − ωout| is larger, for data set S1.
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Figure 6.7: (Average) agreement between the community assignments of maxi-
mum likelihood and the true underlying community assignments, as a function
of the number of vertices and the parameter values (ωin, ωout), for data set S1.
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Figure 6.8: (Average) agreement between the community assignments of maxi-
mum likelihood and the true underlying community assignments, as a function
of the number of vertices n, the number of communities K and the level of
community strength, for data set S2.

Respectively, for data set S2, the agreement is shown to be higher when
the community strength is higher (Figure 6.8). Recovery of the underlying as-
sortativity structure is likewise easier when the absolute difference |ωin − ωout|
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A
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R

A
G

R
A

G
R

A
G

R
A

G
R

0.1
0.4

0.72
2.36

9/10
0.74

1.43
8/10

0.72
1.26

8/10
0.80

1.74
10/10

0.73
1.06

8/10
0.6

0.80
1.52

9/10
0.87

1.33
9/10

0.89
1.02

10/10
0.86

0.86
10/10

0.97
0.80

10/10
0.9

0.94
0.80

10/10
0.99

0.61
10/10

0.99
0.39

10/10
0.99

0.42
10/10

1.00
0.39

10/10
0.4

0.1
0.66

2.18
7/10

0.80
2.02

9/10
0.75

1.70
7/10

0.76
1.20

9/10
0.81

1.01
9/10

0.6
0.64

0.56
5/10

0.65
0.42

6/10
0.64

0.39
6/10

0.66
0.37

7/10
0.66

0.35
9/10

0.9
0.78

0.40
8/10

0.72
0.26

9/10
0.86

0.17
10/10

0.71
0.18

7/10
0.82

0.17
9/10

0.6
0.1

0.82
1.17

9/10
0.86

0.92
8/10

0.85
0.84

9/10
0.90

0.89
10/10

0.92
0.70

10/10
0.4

0.68
0.47

5/10
0.60

0.48
4/10

0.70
0.40

8/10
0.69

0.39
6/10

0.62
0.36

5/10
0.9

0.65
0.23

9/10
0.67

0.20
6/10

0.67
0.15

9/10
0.66

0.17
8/10

0.66
0.13

6/10
0.9

0.1
0.85

0.78
8/10

0.99
0.37

10/10
0.92

0.31
10/10

0.96
0.35

10/10
0.97

0.41
10/10

0.4
0.70

0.25
8/10

0.66
0.26

6/10
0.71

0.18
8/10

0.76
0.16

7/10
0.82

0.14
9/10

0.6
0.64

0.24
7/10

0.71
0.20

5/10
0.66

0.15
5/10

0.66
0.15

5/10
0.61

0.12
5/10

Table 6.8: Comparison between the model parameters of maximum likelihood
and the ground truth parameters, for data set S1.
A - Community agreement; G - Relative percentage gap; R - Recovered
assortativity structure
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R
A
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A
G

R
A
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2
low

0.66
0.57

8/20
0.66

0.46
10/20

0.71
0.47

15/20
0.70

0.40
17/20

0.73
0.38

15/20
m
edium

0.76
0.52

17/20
0.72

0.47
13/20

0.85
0.38

16/20
0.90

0.30
19/20

0.88
0.29

19/20
high

0.89
0.61

18/20
0.93

0.57
19/20

0.93
0.45

20/20
0.99

0.38
20/20

0.98
0.40

20/20
3

low
0.56

3.34
4/20

0.63
2.35

5/20
0.58

0.88
3/20

0.57
0.76

3/20
0.56

0.58
3/20

m
edium

0.58
2.18

3/20
0.62

1.79
6/20

0.64
1.36

8/20
0.68

0.79
9/20

0.66
0.61

10/20
high

0.72
10.24

12/20
0.75

2.51
12/20

0.84
3.10

14/20
0.86

1.69
15/20

0.83
0.89

16/20

Table 6.9: Comparison between the solutions of maximum likelihood and the
ground truth parameters of the generative models, for data set S2.
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is larger, which is naturally expected. Since data set S2 contains only assor-
tative ground truth structures, in this case R simply measures how often the
estimated affinity matrix Ω̂ is assortative.

The relative gap G indicates that the solution of maximum likelihood
may be far from the ground truth solution, in general. This is especially true
for small networks, such as the ones considered in this work, since they are
subject to higher variance. The experiments show that for these data sets the
ground truth parameters are always sub-optimal for the model given by the
DCSBM.

A performance comparison of the heuristic algorithms in recovering
the ground truth communities is also presented, in Tables 6.10 and 6.11,
respectively for data sets S1 and S2. The tables report the agreement between
communities recovered by the heuristic (and exact) approaches and the true
underlying communities used in the generation of each instance. In the columns
under “Agreement of best found solution”, the best solution in terms of
objective value found by each heuristic (out of 50 trials) is compared to the
solution found by the MILP with SBC. The performance of the heuristics is
similar to that of the exact method, with no single approach being clearly
better than the rest in recovering the ground truth communities. One reason
for this lies in the fact that some instances have multiple globally optimal
solutions, and the proposed algorithms may arrive at different optima, having
the same objective value but different values of community agreement.

For some instances the resulting community agreement is considerably
low, for both exact and heuristic solution methods. Of course, in some cases it
may be impossible to exactly recover the ground truth communities, even in
theory, as there is not enough information present in the graph.

We further investigate how such heuristic methods perform in community
recovery in an average run. The table columns under “Average agreement”
report the average community agreement out of 50 trials of each heuristic
method. As visible in the results, when the average agreement is considered,
the heuristics are outperformed by the exact approach in almost all instances,
highlighting the importance of using exact (or high-performing heuristic)
optimization algorithms.
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Agreement of best found solution Average agreement
n ωin ωout E-LS1 E-LS2 E-exact MILP E-LS1 E-LS2 E-exact MILP
8 0.1 0.4 0.72 0.72 0.74 0.72 0.69 0.73 0.71 0.72

0.6 0.78 0.76 0.8 0.8 0.72 0.75 0.74 0.8
0.9 0.94 0.92 0.92 0.94 0.76 0.85 0.82 0.94

0.4 0.1 0.7 0.65 0.68 0.66 0.65 0.67 0.64 0.66
0.6 0.65 0.68 0.68 0.64 0.66 0.66 0.69 0.64
0.9 0.79 0.79 0.78 0.78 0.73 0.75 0.75 0.78

0.6 0.1 0.81 0.80 0.79 0.82 0.68 0.70 0.68 0.82
0.4 0.7 0.68 0.7 0.68 0.66 0.67 0.65 0.68
0.9 0.65 0.65 0.65 0.65 0.63 0.64 0.62 0.65

0.9 0.1 0.85 0.88 0.86 0.85 0.72 0.78 0.75 0.85
0.4 0.7 0.7 0.69 0.7 0.66 0.67 0.68 0.7
0.6 0.64 0.64 0.64 0.64 0.63 0.64 0.63 0.64

10 0.1 0.4 0.81 0.81 0.83 0.74 0.67 0.71 0.72 0.74
0.6 0.84 0.80 0.85 0.87 0.74 0.78 0.77 0.87
0.9 0.98 0.99 0.99 0.99 0.78 0.81 0.85 0.99

0.4 0.1 0.75 0.76 0.78 0.8 0.68 0.69 0.71 0.8
0.6 0.65 0.65 0.64 0.65 0.66 0.65 0.65 0.65
0.9 0.68 0.72 0.72 0.72 0.68 0.68 0.73 0.72

0.6 0.1 0.85 0.85 0.85 0.86 0.72 0.75 0.75 0.86
0.4 0.59 0.59 0.6 0.6 0.62 0.63 0.62 0.60
0.9 0.65 0.63 0.63 0.67 0.63 0.64 0.63 0.67

0.9 0.1 0.99 0.99 0.99 0.99 0.79 0.79 0.80 0.99
0.4 0.64 0.66 0.65 0.66 0.66 0.66 0.66 0.66
0.6 0.72 0.71 0.71 0.71 0.65 0.65 0.65 0.71

12 0.1 0.4 0.78 0.78 0.81 0.72 0.67 0.69 0.70 0.72
0.6 0.88 0.88 0.89 0.89 0.75 0.80 0.81 0.89
0.9 0.99 0.99 0.98 0.99 0.76 0.81 0.82 0.99

0.4 0.1 0.76 0.75 0.75 0.75 0.67 0.68 0.70 0.75
0.6 0.62 0.61 0.61 0.64 0.63 0.62 0.65 0.64
0.9 0.87 0.86 0.86 0.86 0.72 0.70 0.71 0.86

0.6 0.1 0.86 0.87 0.84 0.85 0.71 0.71 0.74 0.85
0.4 0.7 0.7 0.7 0.7 0.66 0.68 0.67 0.7
0.9 0.68 0.67 0.68 0.67 0.64 0.63 0.66 0.67

0.9 0.1 0.92 0.91 0.92 0.92 0.75 0.77 0.78 0.92
0.4 0.71 0.71 0.71 0.71 0.67 0.66 0.71 0.71
0.6 0.65 0.66 0.66 0.66 0.64 0.65 0.63 0.66

14 0.1 0.4 0.82 0.81 0.82 0.80 0.69 0.69 0.73 0.8
0.6 0.87 0.86 0.86 0.86 0.70 0.73 0.76 0.86
0.9 0.99 0.99 0.99 0.99 0.78 0.81 0.84 0.99

0.4 0.1 0.76 0.76 0.76 0.76 0.67 0.69 0.67 0.76
0.6 0.64 0.66 0.67 0.66 0.63 0.62 0.64 0.66
0.9 0.71 0.71 0.70 0.71 0.65 0.65 0.67 0.71

0.6 0.1 0.89 0.9 0.9 0.9 0.74 0.72 0.74 0.9
0.4 0.67 0.69 0.67 0.69 0.63 0.62 0.65 0.69
0.9 0.64 0.66 0.64 0.66 0.61 0.62 0.61 0.66

0.9 0.1 0.96 0.96 0.96 0.96 0.75 0.77 0.79 0.96
0.4 0.79 0.79 0.79 0.76 0.66 0.66 0.67 0.76
0.6 0.66 0.66 0.66 0.66 0.63 0.63 0.62 0.66

16 0.1 0.4 0.73 0.74 0.74 0.73 0.65 0.66 0.71 0.73
0.6 0.98 0.97 0.98 0.97 0.77 0.78 0.81 0.97
0.9 1.0 1.0 1.0 1.0 0.80 0.82 0.84 1.0

0.4 0.1 0.82 0.83 0.81 0.81 0.68 0.68 0.70 0.81
0.6 0.68 0.66 0.66 0.66 0.62 0.62 0.63 0.66
0.9 0.83 0.81 0.85 0.82 0.70 0.69 0.75 0.82

0.6 0.1 0.92 0.92 0.92 0.92 0.75 0.74 0.77 0.92
0.4 0.62 0.62 0.61 0.62 0.61 0.62 0.61 0.62
0.9 0.67 0.66 0.69 0.66 0.65 0.64 0.65 0.66

0.9 0.1 0.96 0.98 0.98 0.98 0.79 0.79 0.79 0.98
0.4 0.82 0.82 0.82 0.82 0.69 0.70 0.77 0.82
0.6 0.64 0.64 0.64 0.61 0.61 0.61 0.61 0.61

Table 6.10: Comparison between heuristic and exact solution algorithms in
recovering the ground truth communities of data set S1.
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Community Agreement of best found solution Average agreement
K n strength E-LS1 E-LS2 E-exact MILP E-LS1 E-LS2 E-exact MILP
2 8 low 0.66 0.66 0.66 0.66 0.65 0.65 0.64 0.66

medium 0.76 0.75 0.79 0.76 0.68 0.68 0.68 0.76
high 0.89 0.88 0.89 0.89 0.75 0.77 0.75 0.89

10 low 0.64 0.64 0.65 0.66 0.65 0.65 0.64 0.66
medium 0.73 0.74 0.75 0.72 0.69 0.69 0.67 0.72
high 0.93 0.92 0.92 0.92 0.76 0.79 0.77 0.92

12 low 0.71 0.70 0.71 0.71 0.66 0.66 0.67 0.71
medium 0.84 0.84 0.85 0.85 0.69 0.72 0.71 0.85
high 0.93 0.94 0.93 0.93 0.79 0.81 0.80 0.93

14 low 0.70 0.70 0.71 0.70 0.65 0.65 0.65 0.7
medium 0.89 0.9 0.89 0.9 0.71 0.72 0.74 0.9
high 0.99 0.98 0.99 0.99 0.76 0.78 0.78 0.99

16 low 0.72 0.73 0.73 0.73 0.67 0.68 0.69 0.73
medium 0.88 0.87 0.88 0.88 0.74 0.74 0.78 0.88
high 0.98 0.98 0.98 0.98 0.79 0.82 0.82 0.98

3 8 low 0.58 0.58 0.58 0.56 0.57 0.58 0.56 0.56
medium 0.60 0.60 0.61 0.58 0.58 0.61 0.58 0.58
high 0.75 0.76 0.74 0.72 0.62 0.68 0.63 0.72

10 low 0.62 0.62 0.63 0.63 0.57 0.59 0.57 0.63
medium 0.64 0.62 0.63 0.62 0.59 0.60 0.59 0.62
high 0.73 0.76 0.74 0.75 0.62 0.69 0.64 0.75

12 low 0.57 0.57 0.57 0.58 0.56 0.56 0.55 0.58
medium 0.65 0.64 0.59 0.64 0.60 0.61 0.55 0.64
high 0.85 0.85 0.83 0.84 0.66 0.71 0.67 0.84

14 low 0.59 0.58 0.56 0.57 0.55 0.55 0.57 0.57
medium 0.7 0.7 0.7 0.68 0.60 0.63 0.61 0.68
high 0.87 0.88 0.87 0.86 0.67 0.72 0.70 0.86

16 low 0.58 0.57 0.58 0.56 0.54 0.55 0.55 0.56
medium 0.71 0.70 0.70 0.66 0.60 0.61 0.62 0.66
high 0.83 0.84 0.84 0.83 0.66 0.70 0.70 0.83

Table 6.11: Comparison between heuristic and exact solution algorithms in
recovering the ground truth communities of data set S2.
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7
Conclusions

In this work, we introduced mathematical programming formulations
for the maximum likelihood estimation problem of community detection with
the DCSBM. We first introduced a descriptive formulation based on a mixed
integer non-linear program (MINLP) and then we used linearization techniques
to arrive at a mixed integer linear program (MILP). By carefully analyzing
the model, we were able to develop a more targeted MILP method which
significantly reduced the computational time needed by the direct MINLP
formulation. The proposed solution methods can find optimal solutions of
maximum likelihood with a certificate of global optimality.

The ability to solve a machine learning model to optimality is valuable
for the many reasons. In general, when proposing a new model for a specific
task, it is useful to analyze the optimal solutions of the model as only optimal
solutions really represent the model itself. If we only consider heuristic solutions
which are far from optimality, we cannot draw reliable conclusions about
the suitability of the model for the given task. Therefore, solving a machine
learning model to optimality is an important step to validate the usefulness of
the model and to assess the performance of (heuristic) solution methods.

In other words, exact methods allow us to decouple two sources of possible
issues that may lead to undesired results: issues stemming from the adoption of
an inadequate model (or inappropriate model family) and issues that arise from
the difficulty of solving the search problem that underlies the assumed model.
Once we are able to exactly solve a proposed model we can analyze it in a more
principled way, eliminating possible issues that may arise from accepting sub-
optimal solutions. In this regard, Gribel et al. (2019) [77] provide an interesting
discussion on the use of high-performance optimization algorithms in machine
learning, specifically for the minimum sum-of-squares clustering problem.

There is a common belief in machine learning that solving a model to
optimality necessarily leads the model to overfit to the training data, therefore
increasing the generalization error. Thus, practitioners and researchers are
often not interested in solving to optimality the models that they adopt. In
fact some methods in machine learning are even designed to find sub-optimal
solutions in order to avoid overfitting and to reduce the generalization error. A
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typical example is the use of early stopping techniques in neural networks and
deep learning. On the other hand, a classical way of avoiding overfitting is to
include regularization terms in the objective function or to reduce the model
complexity in some specific way, effectively modifying the model itself instead
of forcing the solution method to find sub-optimal solutions. While this notion
that too much optimization hurts generalization may be true for some types of
models, there is not enough evidence to suggest that it is universally true for
all model families. As an example, Bertsimas et al. (2017) [55] have recently
challenged this belief, and experimentally showed that optimal decision trees
can have a lower generalization error than decision trees learned via heuristics
(as long as proper regularization is included in the model).

Of course in some cases the benefits of exact solution methods may only
be possible at a high computational cost. As visible in our computational
experiments, the proposed exact methods are only practical for small networks
with up to 16 vertices. For larger instances, the only option currently available
is to rely on heuristics. For this reason, we have discussed three simple heuristic
approaches based on the EM algorithm. The heuristics were shown to achieve
optimal solutions for most instances, in reduced computing times compared
to the exact methods. On some instances the heuristic solutions had better
objective values than the ones found by the exact methods (in cases when they
were unable to prove solution optimality within the time limit). Even though
our computational experiments focused on small networks, we emphasize that
the behavior and performance of heuristic approaches in larger networks may
be very different from the results observed in this simpler setting.

This work raises some interesting possibilities for future research. In
practice it would be interesting to solve instances with hundreds of thousands
of vertices to optimality. Thus, there is a large room for improvement. In
particular, during the computational experiments we noted that the MILP
often finds the optimal solution early in the optimization process, but it
takes a very long time to prove optimality. One possibility is to investigate
different formulations to the problem and study the performance of the solution
methods.

For future work, we aim to investigate the use of semidefinite program-
ming relaxations in the branch-and-bound process. In the SBM literature
many works have studied SDP relaxations for recovering communities in the
Planted Partition Model and in general SBMs. We are interested in investigat-
ing whether such SDP relaxations can be extended to optimize for both the
community assignments and the latent parameters which define the affinity
matrix in the general SBM. By adopting such formulations we hope to have
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tighter lower bounds, which could increase the efficiency of the branch-and-
bound exploration.
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A
Log-Likelihood Function

The likelihood function can be expressed as:

P (A|g,Ω,θ) =
∏
i<j

(θiθjωgigj
)Aij

Aij!
exp (−θiθjωgigj

)×

∏
i

(
1
2θ

2
iωgigi

)Aii/2(
1
2Aii

)
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(
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2θ
2
iωgigi

) (A-1)

Assuming that the expected number of edges between vertices i and j is given
by θiθjωgigj

= kikj

2m ωgigj
, yields the following equation:

P (A|g,Ω) =
∏
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(
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Taking the logarithm of the above expression yields:

L = logP (A|g,Ω) =
n∑
i<j

Aij log(kikj

2m ) + Aij logωgigj
− log(Aij!)− kikj

2m ωgigj
+
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1
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2
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(A-3)
Ignoring terms which are constant results in:

L = logP (A|g,Ω) =
n∑
i<j

(
Aij logωgigj

− kikj

2m ωgigj

)
+

n∑
i
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1
2Aii logωgigi

− 1
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(A-4)

= 1
2

n∑
i,j

(
Aij logωgigj

− kikj

2m ωgigj

)
(A-5)

which is the model adopted throughout the paper.
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B
MILP formulation

The mixed integer linear program described in Section 4.2 can be
explicitly stated as follows:

min
Z,Ω,Y,X

1
2

n∑
i,j

K∑
r,s

xijrs

s. t. xijrs ≥ aijω̃ ωrs + bijω̃ −Mijrs(1− yijrs), ∀ij ∈ V, ∀rs ∈ C,∀ω̃ ∈ R+

xijrs ≤Mijrs yijrs ∀ij ∈ V, ∀rs ∈ C

xijrs ≥Mijrs yijrs ∀ij ∈ V, ∀rs ∈ C

zir − yijrs ≥ 0 ∀ij ∈ V, ∀rs ∈ C

zjs − yijrs ≥ 0 ∀ij ∈ V, ∀rs ∈ C

1− zir − zjs + yijrs ≥ 0 ∀ij ∈ V, ∀rs ∈ C
K∑
r=1

zir = 1 ∀i ∈ V

z11 = 1
j−1∑
i=2

r−1∑
l=1

zil −
r∑
l=1

zjl ≤ j − 3, ∀r ∈ {2, . . . , K − 1},∀j ∈ {r, . . . , n}

zir ∈ {0, 1} ∀i ∈ V, ∀r ∈ C

yijrs ∈ {0, 1} ∀ij ∈ V, ∀rs ∈ C

ωrs ∈ R+ ∀rs ∈ C

xijrs ∈ R+ ∀ij ∈ V, ∀rs ∈ C

where aijω̃ := −Aij
ω̃

+ kikj
2m ∀ij ∈ V, ∀ω̃ ∈ R+,

bijω̃ := Aij(1− log ω̃) ∀ij ∈ V, ∀ω̃ ∈ R+.

In terms of the size of the problem, note that variable Z has nK elements,
variable Y has n2K2 elements, variable Ω has K2 elements and variable X
has n2K2 elements, resulting in a total of 2n2K2 + nK +K2 variables. In the
special case when K = 2, the problem has 8n2 + 2n+ 4 variables.

DBD
PUC-Rio - Certificação Digital Nº 1820984/CA


	A MIP approach for Community Detection in the Stochastic Block Model
	Resumo
	Table of contents
	Introduction
	Theoretical Foundations
	Random Graphs
	Erdos–Rényi Random Graph Model
	Configuration Model
	Stochastic Block Model
	Degree-Corrected Stochastic Block Model
	Planted Partition Model


	Community Detection with the Stochastic Block Model
	Maximum Likelihood Estimation
	Community Recovery
	Literature Review
	Contribution

	Exact Solution Approaches
	Descriptive Formulation
	Mixed Integer Linear Programming Formulation
	Dynamic Constraints Generation
	Bounds Tightening
	Symmetry-breaking Constraints


	Heuristic Solution Approaches
	Expectation-Maximization Algorithm
	Maximization Step (M-step)
	Expectation Step (E-step)


	Computational Experiments and Analyses
	Instances
	Performance of the exact methods
	Performance of the heuristic methods
	Comparison to the ground truth

	Conclusions
	Bibliography
	Log-Likelihood Function
	MILP formulation



